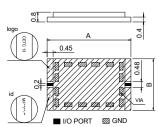


Feature

- Precision MEMS process
- High performance, shielded, Micro-cavity structure
- Silicon substrate, 50Ω CPW output
- Au wire bonding, for MCM applications

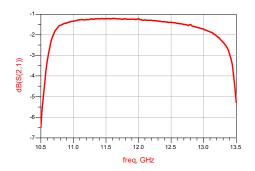
Environmental Specifications

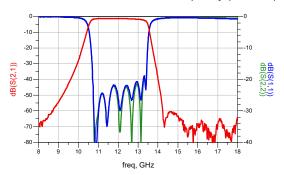

Operating Temperature	-55℃~+85℃	
Storage Temperature	-55℃~+125℃	
Max. Input Power	35dBm	

Electrical Specifications(T_A=+25°C)

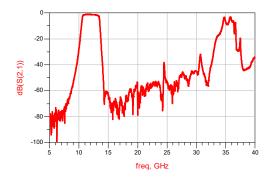
Parameter	Min.	Тур.	Max.	Unit
Center Freq. (f₀)	-	12.0	-	GHz
Pass Band	10.9	-	13.1	GHz
Ripple in Pass band		1	dB	
Insertion Loss @ fo	-	-	1.6	dB
Return Loss	15	-	-	dB
Out of band	≥40@DC~9.4GHz			dB
Attenuation	≥40@14.2~20GHz			dB
Group Delay Variation	≤1.2@Pass Band r			ns
Linear Phase	≤±10@	0		

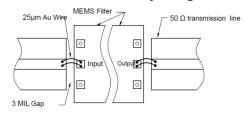
S2P file name: SiMF12_2R2-7D2.s2p


Outline Drawing

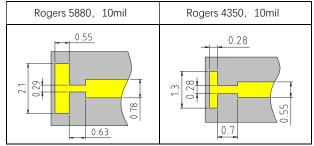

Symbol	Value (mm)			
Syrribor	Min.	Nominal	Max.	
А	6.8	-	7.0	
В	3.2	-	3.4	

Typical Test Curves


Insertion Loss VS Frequency (T_A=25°C)


Insertion Loss & Return Loss VS Frequency (T_A=25°C)

Broadband Insertion Loss VS Frequency (T_A=25°C)



Recommended Assembly Diagrams

Application Notes:

- 1. The chip is back-metalized and can be die mounted with AuSn eutectic performs or with electrically conductive epoxy (for example ME8456).
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. (2.9ppm/ $^{\circ}$ C) with Silicon, thickness 0.2mm max.
- 3. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 4. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 5. Recommended to use T structure as below for bonding.

6. If you have any questions, please contact us.