Feature

- High Precision GaAs process
- High performance, shielded
- GaAs substrate, 50Ω CPW output
- Au wire bonding, for MCM applications

Environmental Specifications

Operating Temperature	$-55^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C} \sim+150^{\circ} \mathrm{C}$
Max. Input Power	30 dBm

Electrical Specifications $\left(T_{A}=+25^{\circ} \mathrm{C}\right)$

Parameter	Min.	Typ.	Max.	Unit
Cut-off Freq. $\left(\mathrm{f}_{\mathrm{c}}\right)$	-	0.35	-	GHz
Insertion Loss @ f_{c}	-	-	2.8	dB
Return Loss	15	-	-	dB
Out of band Attenuation	$\geqslant 25 @ 0.5 \mathrm{GHz}$	dB		
	$\geqslant 40 @ 0.55 \mathrm{GHz}$	dB		

S2P file name: PDLF-R35.s2p

Outline Drawing

Notes:

1. Dimensions are in millimeters. Tolerance: $\pm 0.05 \mathrm{~mm}$
2. Die thickness is 0.15 mm
3. Typical bond pad is $0.1 \times 0.1 \mathrm{~mm}^{2}$.
4. The bottom of the device is gold plated, should be grounded.

Typical Test Curves

Insertion Loss VS Frequency $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Insertion Loss \& Return Loss VS Frequency $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Broadband Insertion Loss VS Frequency $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Recommended Assembly Diagrams

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.
2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. $(5.8 \times 10-6 /)$ with GaAs.
3. Recommend using Ф25um Au wire for bonding, whose length is around 400um.
4. Sinter by AuSn (80/20), which doesn't exceed $300^{\circ} \mathrm{C}$ within 30 seconds max.
5. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
6. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
7. The device is sensitive to ESD. ESD protection is required during storage and usage.
8. If you have any questions, please contact us.
