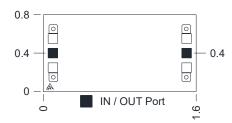


BWLF-22 MMIC Low pass Filter

Feature

- •High Precision GaAs process
- •High performance, shielded
- •GaAs substrate, 50Ω CPW output
- •Au wire bonding, for MCM applications

Environmental Specifications


Operating Temperature	-55℃~+85℃	
Storage Temperature	-65℃~+150℃	
Max. Input Power	30dBm	

Electrical Specifications(T_A=+25°C)

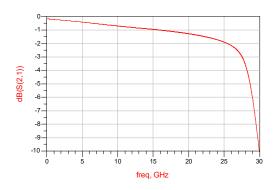
Parameter	Min.	Тур.	Max.	Unit
Cut-off Freq. (f₀)	-	22	-	GHz
Insertion Loss @ fc	-	-	2	dB
Return Loss	15	-	-	dB
Out of band	≥20@33.5GHz			dB
Attenuation	≥40@38GHz			dB

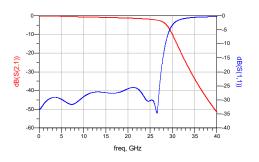
S2P file name: BWLF-22.s2p

Outline Drawing

Notes:

1. Dimensions are in millimeters. Tolerance: ±0.05mm

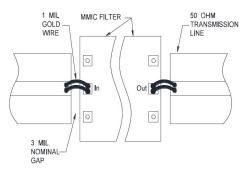

2. Die thickness is 0.1mm


3. Typical bond pad is 0.1x0.1 mm².

4. The bottom of the device is gold plated, should be grounded.

Typical Test Curves

Insertion Loss VS Frequency (T_A=25°C)



Broadband Insertion Loss VS Frequency (T_A=25°C)

Recommended Assembly Diagrams

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. (5.8×10-6/) with GaAs.

3. Recommend using $\Phi 25 \text{um}$ Au wire for bonding, whose length is around 400 \text{um}.

4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.

4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.

6. The device is sensitive to ESD. ESD protection is required during storage and usage.

7. If you have any questions, please contact us.

Insertion Loss & Return Loss VS Frequency $(T_A=25^{\circ}C)$