

Feature

- High Precision GaAs process
- High performance, shielded
- ullet GaAs substrate, 50Ω CPW output
- Au wire bonding, for MCM applications

Environmental Specifications

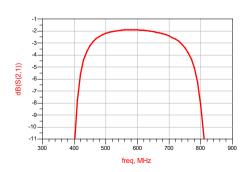
Operating Temperature	-55℃~+85℃	
Storage Temperature	-65°C∼+150°C	
Max. Input Power	30dBm	

Electrical Specifications(T_A=+25°C)

Parameter	Min.	Тур.	Max.	Unit
Center Freq. (f₀)	-	0.6	-	GHz
Pass band	0.5	ı	0.7	GHz
Insertion Loss @ f₀	-	-	2.5	dB
Ripple in Pass band	-	-	1	dB
Return Loss	12	-	-	dB
Out of band	≥25@0.36GHz			dB
Attenuation	≥30@0.9GHz			dB

S2P file name: PDBF-R45-R75-6C3.s2p

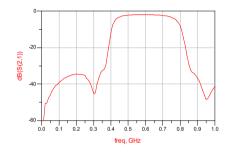
Outline Drawing

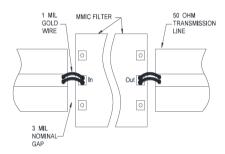


Notes:

- 1. Dimensions are in millimeters. Tolerance: ±0.05mm
- 2. Die thickness is 0.15 mm
- 3. Typical bond pad is 0.1x0.1 mm².
- 4. The bottom of the device is gold plated, should be grounded.

Typical Test Curves


Insertion Loss VS Frequency (T_A=25°C)


Insertion Loss & Return Loss VS Frequency (T_A=25°C)

Broadband Insertion Loss VS Frequency (T_A=25°C)

Recommended Assembly Diagrams

Application Notes:

- 1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. (5.8×10 -6/) with GaAs.
- 3. Recommend using $\Phi 25 \text{um}$ Au wire for bonding, whose length is around 400 um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.