

BWHF-12G MMIC High pass Filter

Feature

- High Precision GaAs process
- •High performance, shielded
- •GaAs substrate, 50Ω CPW output
- Au wire bonding, for MCM applications

Environmental Specifications

Operating Temperature	-55℃~+85℃	
Storage Temperature	-65℃~+150℃	
Max. Input Power	30dBm	

Electrical Specifications(T_A=+25°C)

Parameter	Min.	Тур.	Max.	Unit
Pass band	-	12~35	-	GHz
Insertion Loss @ f _c	-	-	1.7	dB
Return Loss	15	-	-	dB
Out of band	≥20@8.3GHz			dB
Attenuation	≥40@7.6GHz			dB

S2P file name: BWHF-12G.s2p

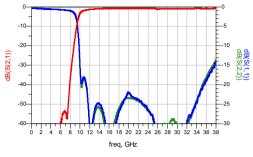
Outline Drawing

Notes:

1. Dimensions are in millimeters. Tolerance: ±0.05mm

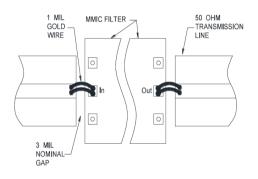
2. Die thickness is 0.1mm

3. Typical bond pad is 0.1x0.1 mm².


4. The bottom of the device is gold plated, should be grounded.

Typical Test Curves

Insertion Loss VS Frequency ($T_A=25^{\circ}C$)


Insertion Loss & Return Loss VS Frequency ($T_A=25^{\circ}C$)

Broadband Insertion Loss VS Frequency $(T_A=25^{\circ}C)$

Recommended Assembly Diagrams

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ($5.8 \times 10-6$ /) with GaAs.

3. Recommend using $\Phi 25 \text{um}$ Au wire for bonding, whose length is around 400 \text{um}.

4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.

4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.

6. The device is sensitive to ESD. ESD protection is required during storage and usage.

7. If you have any questions, please contact us.