

Feature

- •High Precision GaAs process
- •High performance, shielded
- •GaAs substrate, 50Ω CPW output
- Au wire bonding, for MCM applications

Environmental Specifications

Operating Temperature	-55℃~+85℃	
Storage Temperature	-65°C~+150°C	
Max. Input Power	30dBm	

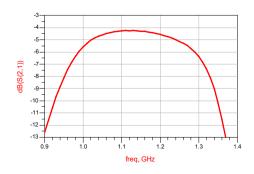
Electrical Specifications(T_A=+25°C)

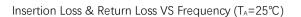
Parameter	Min.	Тур.	Max.	Unit
Center Freq. (f ₀)	-	1.22	-	GHz
Pass band	1.02	-	1.23	GHz
Insertion Loss @ f ₀	-	-	4.5	dB
Ripple in Pass band	-	-	1.0	dB
Return Loss	12	-	-	dB
Out of band	≥30@0.	≥30@0.7GHz		
Attenuation	≥35@1.	≥35@1.5GHz		

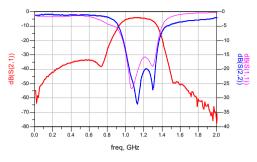
S2P file name: PDBF-1R015-1R235-8C5.s2p

Outline Drawing

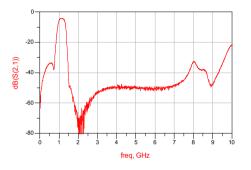
Notes:

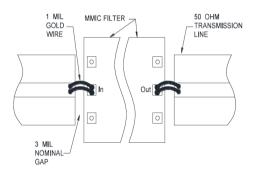

1. Dimensions are in millimeters. Tolerance: ±0.05mm


- 2. Die thickness is 0.15mm
- 3. Typical bond pad is 0.1x0.1 mm².


4. The bottom of the device is gold plated, should be grounded.

Typical Test Curves


Insertion Loss VS Frequency (T_A=25°C)



Broadband Insertion Loss VS Frequency (T_A=25°C)

Recommended Assembly Diagrams

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ($5.8 \times 10-6$ /) with GaAs.

3. Recommend using $\Phi 25 \text{um}$ Au wire for bonding, whose length is around 400 \text{um}.

4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.

4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.

6. The device is sensitive to ESD. ESD protection is required during storage and usage.

7. If you have any questions, please contact us