

#### **Feature**

Pass Bands: 3GHz~4GHz, 4GHz~5.6GHz, 5.6GHz~8.0GHz, 7.8GHz~9.8GHz;

Insertion Loss in pass bands: ≤8.5dB Isolation between pass bands: ≥30dB

Size: 4.5x4.5x0.1mm

### Description

This device is a Gamonolithic integrated switch filter bank chip. Adopt +5V/0V logic control, and switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

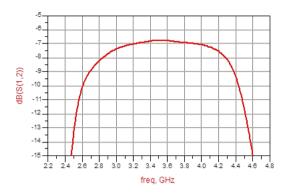
### **Absolute Rating**

| Control Voltage       | -1.5V~+6V  |
|-----------------------|------------|
| Input Power           | 27dBm      |
| Storage Temperature   | -65~+150°C |
| Operating Temperature | -55~+125℃  |

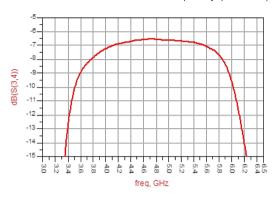
# **Electrical Specifications 1** (T<sub>A</sub>=+25°C)

| Spec.          | Pass band 1            | Pass band 2  | Unit |
|----------------|------------------------|--------------|------|
| Freq. Range    | 3~4                    | 4~5.6        | GHz  |
| Insertion Loss | ≤8.5                   | ≤8.5         | dB   |
| Rejection      | ≥30@6-9GHz ≥30@8-10GHz |              | dBc  |
|                | ≥35@11-16GHz           | ≥35@11-18GHz | dBc  |
| VSWR           | ≤2                     |              | _    |

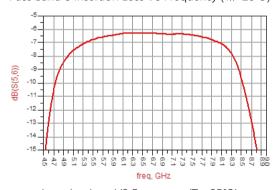
# **Electrical Specifications 2** (T<sub>A</sub>=+25°C)


| Spec.          | Pass band 3  | Pass band 4  | Unit |
|----------------|--------------|--------------|------|
| Freq. Range    | 5.6~8.0      | 7.8~9.8      | GHz  |
| Insertion Loss | ≤8.5         | ≤8.5         | dB   |
| Rejection –    | ≥30@11-12GHz | ≥18@11-13GHz | dBc  |
|                | ≥35@13-20GHz | ≥35@14-22GHz | dBc  |
| VSWR           | ≤2           |              | _    |

S2P file name: BWSBF4-3\_9R8-6C6.s2p



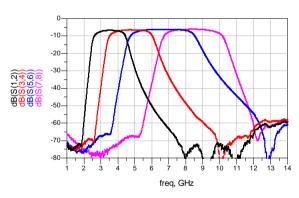

# **Typical Test Curves**


Pass band 1 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)

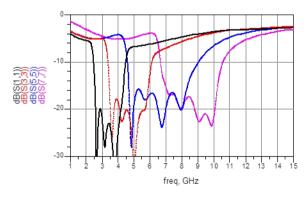



Pass band 2 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)



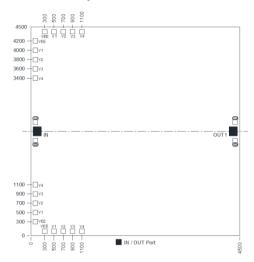

Pass band 3 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)




Pass band 4 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)



Insertion Loss VS Frequency (T<sub>A</sub>=25°C)




Return Loss VS Frequency (T<sub>A</sub>=25°C)



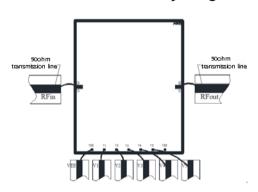


## **Mechanical Specification**

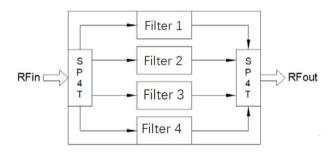


### **Truth Table**

| Control Voltage                  |    |    | D I I- |               |
|----------------------------------|----|----|--------|---------------|
| V1                               | V2 | V3 | V4     | Pass bands    |
| 5V                               | 0V | 0V | 0V     | 3GHz~4GHz     |
| 0V                               | 5V | 0V | 0V     | 4GHz~5.6GHz   |
| 0V                               | 0V | 5V | 0V     | 5.6GHz~8.0GHz |
| 0V                               | 0V | 0V | 5V     | 7.8GHz~9.8GHz |
| Status: Low (0) 0V; High (1) +5V |    |    |        |               |


#### **PINS Definitions**

| Symbol      | Description         |
|-------------|---------------------|
| IN, OUT1    | RF Input, RF Output |
| V1,V2,V3,V4 | Control ports       |
| VEE         | Charging Ports      |


#### Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100 $\mu$  \*100 $\mu$  \*100 $\mu$  which is 50 $\mu$  away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

# **Recommended Assembly Diagrams**



# **Functional Diagram**



## **Application Notes:**

- 1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion.  $(5.8 \times 10-6/)$  with GaAs.
- 3. Recommend using  $\Phi$ 25um Au wire for bonding, whose length is around 200um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.