

Feature

Pass Bands: 8GHz ~ 9GHz, 9GHz ~ 10GHz, 10GHz ~ 11GHz, 11GHz ~ 12GHz; Insertion Loss in pass bands: \leq 7dB Isolation between pass bands: \geq 40dB Size: 5.0x4.5x0.1mm

Description

This device is a FET switch filter bank MMIC based on GaAs processing, 2-4 decoder is ingrated inside. Adopt +5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

Absolute Rating

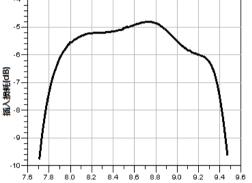
Control Voltage	-1V~+5.5V
Current at Control port	0.4 mA ~ 0.8mA
Input Power	27dBm
Storage Temperature	-65~+150°C
Operating Temperature	-55~+125℃

Electrical Specifications 1 (T_A =+25°C)

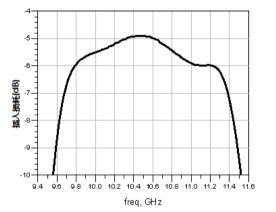
Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	8~9	9~10	GHz
Insertion Loss	≤7	≤7	dB
	≥40@7GHz&10.5GHz	≥40@8GHz&12GHz	dBc
Rejection ≥35	≥35@11.6GHz&12.6GHz	≥35@12.6GHz&13.6GHz	dBc
Ripple in BW	≤1.5		dB
Phase Consistency	\leq ±10 (within one batch)		o
Amplitude Consistency	$\leq \pm 0.5$ (within one batch)		dB
VSWR	≤1.8		_

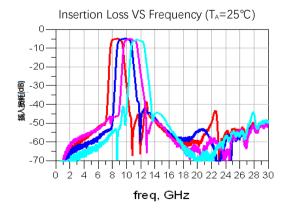
Electrical Specifications 2 (T_A=+25°C)

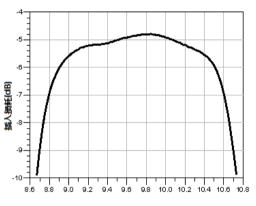
Spec.	Pass band 3	Pass band 4	Unit
Freq. Range	10 ~ 11	11 ~ 12	GHz
Insertion Loss	≤7	≤7	dB
Rejection	≥40@8.8GHz&12.8 GHz	≥40@9.8GHz&13.8GHz	dBc


PDSBF4-8/12-5D6 MMIC Filter Bank

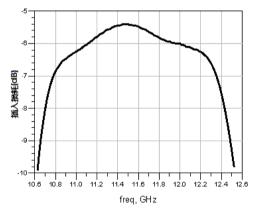
	≥35@13.6GHz&14.6GHz	≥35@14.6GHz&15.6GHz	dBc
Ripple in BW	≤1.5 (in pass band)		dB
Phase Consistency	$\leq \pm 10$ (within one batch)		o
Amplitude Consistency	$\leq \pm 0.5$ (within one batch)		dB
VSWR	≤1.8		—

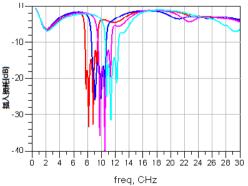

S2P file name: PDSBF4-8/12-5D6.s2p


Typical Test Curves

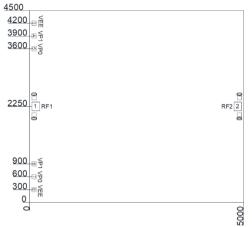


Pass band 3 Insertion Loss VS Frequency ($T_A=25^{\circ}C$)




Pass band 2 Insertion Loss VS Frequency $(T_A=25^{\circ}C)$

Pass band 4 Insertion Loss VS Frequency (T_A=25°C)

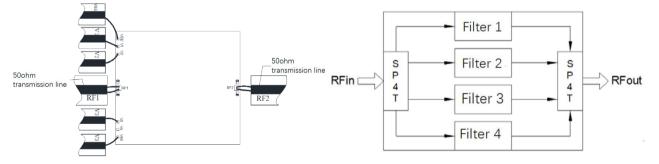


Mechanical Specification

Truth Table

Driver Voltage (VEE=-5V)		
+5/0V Control		Pass bands
VP1	VP0	
0V	0V	8.0-9.0GHz
0V	5V	9.0-10.0GHz
5V	0V	10.0-11.0GHz
5V	5V	11.0-12.0GHz

PINS Definitions


Pin No.	Symbol	Description
1, 2	RF1, RF2	RF Input, RF Output
3, 8	VEE	Driver Power Supply Voltage
4, 5, 6, 7	VP1, VP0	+5/0V Control ports

Recommended Assembly Diagrams

Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um $\star 100 \text{um}$, which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

Functional Diagram

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. $(5.8 \times 10-6/)$ with GaAs.

- 3. Recommend using Φ 25um Au wire for bonding, whose length is around 200um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.