

Feature

Pass Bands: $8GHz \sim 9.6GHz$, $8.8GHz \sim 10.4GHz$, $9.6GHz \sim 11.2GHz$, $10.4GHz \sim 12GHz$; Insertion Loss in pass bands: $\leq 10dB$ Isolation between pass bands: $\geq 30dB$ Size: 3.6x4.9x0.1mm

Description

This device is a FET switch filter bank MMIC based on GaAs processing. Adopt +5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

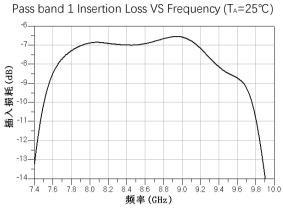
The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

Absolute Rating

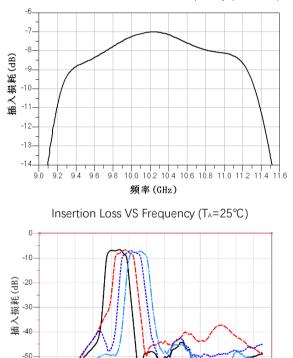
Control Voltage	-1V~+5V
Input Power	27dBm
Storage Temperature	-65~+150℃
Operating Temperature	-55~+125℃

Electrical Specifications 1 (T_A =+25°C)

Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	8 ~ 9.6	8.8 ~ 10.4	GHz
Insertion Loss	≤9	≤9	dB
Rejection	≥30@6.8GHz&10.8GHz	≥30@7GHz&11.6GHz	dBc
VSWR	≤2		—


Electrical Specifications 2 (T_A=+25°C)

Spec.	Pass band 3	Pass band 4	Unit
Freq. Range	9.6 ~ 11.2	10.4 ~ 12	GHz
Insertion Loss	≤9	≤10	dB
Rejection	≥30@8.4GHz&12.4GHz	≥30@9.2GHz&13.2GHz	dBc
VSWR	≤2		—


S2P file name: BWSBF-8_12-4.s2p

Typical Test Curves

Pass band 3 Insertion Loss VS Frequency (T_A=25°C)

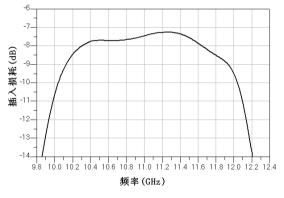
10 12 14 16

频率(GHz)

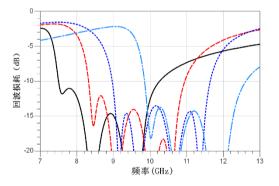
6

20 22 24

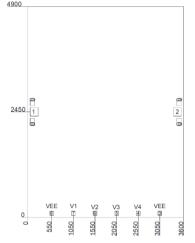
26


18

-60


ó 2

Pass band 2 Insertion Loss VS Frequency (T_A=25°C) -7--8-插入损耗(dB) -9_ -10--11_ -12--13--14-8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 频率(GHz)



Return Loss VS Frequency (T_A=25°C)

Mechanical Specification

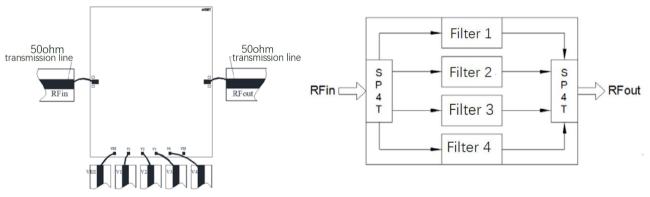
Truth Table

Control Voltage (VEE=-5V)		Pass bands			
V1	V2	V3	V4	Pass Danus	
0	1	1	1	8GHz~9.6GHz	
1	0	1	1	8.8GHz~10.4GHz	
1	1	0	1	9.6GHz~11.2GHz	
1	1	1	0	10.4GHz~12GHz	
Status: Low (0) 0V; High (1) +5V					

PINS Definitions

Pin No.	Symbol	Description
1, 2	RFin, RFout	RF Input, RF Output
4, 5, 6, 7, 8	V4, V3, V2, V1	Control ports

Recommended Assembly Diagrams


Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm

3. Typical bond pad is 100um $\star 100$ um, which is 50um away from chip edge.

4. The bottom of the device is gold plated, should be grounded.

Functional Diagram

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ($5.8 \times 10-6$ /) with GaAs.

3. Recommend using Φ 25um Au wire for bonding, whose length is around 200um.

- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.