

Feature

Pass Bands: $16GHz \sim 17GHz$, $17GHz \sim 18GHz$; Insertion Loss in pass bands: $\leq 8dB$ Isolation between pass bands: $\geq 30dB$ Size: 4.5x2.5x0.15mm

Description

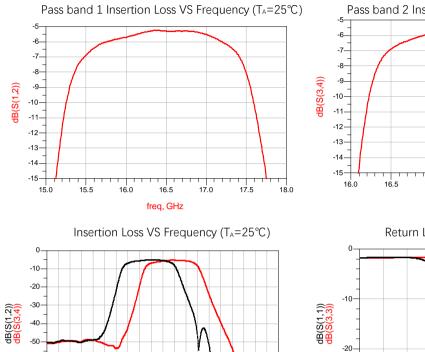
This device is a FET switch filter bank MMIC based on GaAs processing. Adopt +5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

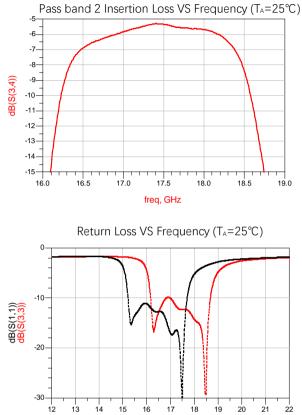
Absolute Rating

Control Voltage	-1V~+5.5V
Current at Control port	0.01 mA~ 0.1mA
Input Power	27dBm
Storage Temperature	-65~+150°C
Operating Temperature	-55~+125℃

Electrical Specifications 1 (T_A =+25°C)


Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	16-17	17-18	GHz
Insertion Loss	≤8	≤8	dB
Rejection	≥30@14&19GHz	≥30@15&20GHz	dBc
Ripple in BW	≤2		dB
VSWR	≤2		_

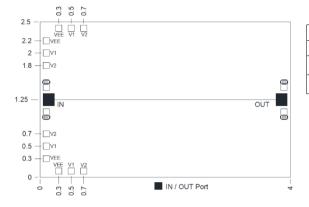
S2P file name: PDSBF4-16/18-5D6.s2p



-60--70--80-

Typical Test Curves

-22.0

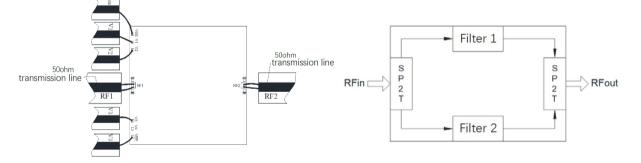

freq, GHz

freq, GHz

Mechanical Specification

Voltage		VEE=-5V	
V1	V2	VEESV	
0V	5V	16~17	
5V	0V	17~18	

PINS Definitions


Symbol	Description
IN	RF Input
OUT	RF Output
V1, V2	Control ports
VEE	Power Supply ports

Recommended Assembly Diagrams

Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um $\star 100 \text{um}$, which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

Functional Diagram

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ($5.8 \times 10-6$ /) with GaAs.

- 3. Recommend using $\Phi 25 \text{um}$ Au wire for bonding, whose length is around 200 um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C $\,$ within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.