

Feature

Pass Bands: 9GHz ~ 11.2GHz, 12.3.GHz ~ 14.5GHz, 14.2GHz ~ 16.4GHz; This chip can be combined with BWSBF-7R8/18-3、BWSBF-8R2/15R3-3 to cover frequency 8-18GHz. Insertion Loss in pass bands: \leq 4.6dB Isolation between pass bands: \geq 30dB Size: 3.8x3.6x0.1mm

Description

This chip is a monolithic integrated PIN switch filter. Adopt +5V/-5V logic control, operating current is 25mA typ. and switching time is less than 20ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

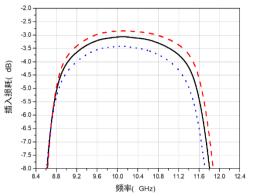
Absolute Rating

Control Voltage	-1.5V~+6V
Input Power	30dBm
Storage Temperature	-65~+150°C
Operating Temperature	-55~+125°C

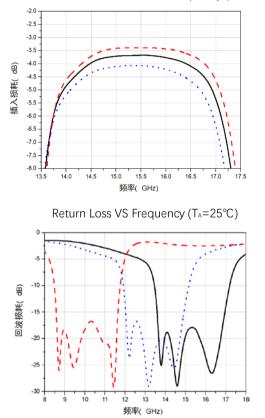
Electrical Specifications 1 (T_A=+25°C)

Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	9~11.2	12.3~14.5	GHz
Insertion Loss	≤4.2	≤4.5	dB
Rejection	≥20@8.1GHz&12.62GHz ≥20@11.2GHz&16.2GHz		dBc
	≥40@7.7GHz&13.43GHz	≥40@10.55GHz&17.1GHz	dBc
VSWR	≤1.8		_

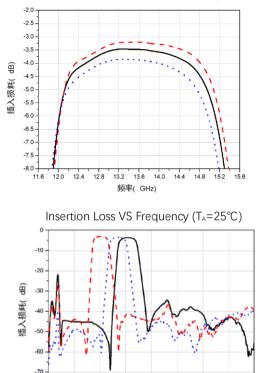
Electrical Specifications 2 (T_A=+25°C)


Spec.	Pass band 3	Unit
Freq. Range	14.2~16.4	GHz
Insertion Loss	≤4.6	dB
Rejection	≥20@12.9GHz&18.25GHz	dBc
	≥40@12.32GHz&19.2GHz	dBc
VSWR	≤1.8	—

S2P file name: BWSBF-9_16R4-3.s2p



Typical Test Curves

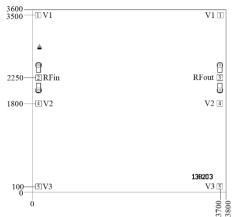

Pass band 1 Insertion Loss VS Frequency (T_A=25°C)

Pass band 3 Insertion Loss VS Frequency ($T_A=25^{\circ}C$)

Pass band 2 Insertion Loss VS Frequency (T_A=25°C)

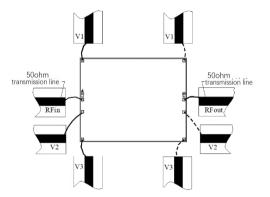
10 15

0


25 30 35

20

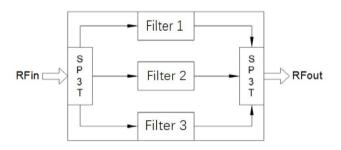
频率(GHz)


Mechanical Specification

PINS Definitions

Pin No.	Symbol	Description
2, 3	RFin, RFout	RF Input, RF Output
1, 4, 5	V1, V2, V3	Control ports

Recommended Assembly Diagrams


Truth Table

Control Voltage		Pass bands		
V1	V2	V3	Pass Danus	
0	1	1	14.2GHz~16.4GHz	
1	0	1	9.0GHz~11.2GHz	
1	1	0	12.3GHz~14.5GHz	
Status: Low (0) -5V; High (1) +5V				

Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um $\star 100 \text{um}$, which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

Functional Diagram

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ($5.8 \times 10-6$ /) with GaAs.

3. Recommend using $\Phi 25 \text{um}$ Au wire for bonding, whose length is around 200 um.

4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.

4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.

6. The device is sensitive to ESD. ESD protection is required during storage and usage.

7. If you have any questions, please contact us.