

Feature

Pass Bands: 12GHz, 14GHz, 16GHz, 18 GHz;

Insertion Loss in pass bands: ≤13dB Isolation between pass bands: ≥30dB

Size: 4.6x4.8x0.15mm

Description

This device is a FET switch filter bank MMIC based on GaAs processing. Adopt +5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

Absolute Rating

Control Voltage	-1.5V~+6V
Input Power	30dBm
Storage Temperature	-65~+150°C
Operating Temperature	-55~+125°C

Electrical Specifications 1 (T_A=+25°C)

Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	Freq. Range 12 14		GHz
Insertion Loss	≤13	≤13	dB
Rejection	≥35@7GHz-10GHz ≥35@7GHz-13GHz		dBc
	≥35@13GHz	≥35@15GHz	dBc
VSWR	≤2		_

Electrical Specifications 2 (T_A=+25°C)

Spec.	Pass band 3	Pass band 4	Unit
Freq. Range	16	18	GHz
Insertion Loss	≤13	≤13	dB
Rejection	≥35@7GHz-15GHz	≥35@7GHz-17GHz	dBc
	≥35@17GHz	≥35@19GHz	dBc
VSWR	≤2		_

S2P file name: BWSBF-12_18-4.s2p

Typical Test Curves

Pass band 1 Insertion Loss VS Frequency (T_A=25°C)

Pass band 2 Insertion Loss VS Frequency (T_A=25°C)

Pass band 3 Insertion Loss VS Frequency (T_A=25°C)

Pass band 4 Insertion Loss VS Frequency (T_A=25°C)

Insertion Loss VS Frequency (T_A=25°C)

Return Loss VS Frequency (T_A=25°C)

Mechanical Specification

Truth Table

Voltage (VEE=-5V)		Pass bands		
V1	V2	V3	V4	Pass Danus
0V	5V	5V	5V	12 GHz
5V	0V	5V	5V	14 GHz
5V	5V	0V	5V	16 GHz
5V	5V	5V	0V	18 GHz

PINS Definitions

Symbol	Description	
RF1, RF2	RF Input, RF Output	
V1, V2, V3, V4	Control ports	
VEE	Power Supply ports	

Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um *100um, which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

Recommended Assembly Diagrams

Functional Diagram

Application Notes:

- 1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.
- 2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. $(5.8 \times 10-6/)$ with GaAs.
- 3. Recommend using Φ 25um Au wire for bonding, whose length is around 200um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.