

### Feature

Pass Bands:  $3GHz \sim 3.25GHz$ ,  $3.25GHz \sim 3.5GHz$ ,  $3.5GHz \sim 3.75GHz$ ,  $3.75GHz \sim 4GHz$ ; Insertion Loss in pass bands:  $\leq 9dB$ Isolation between pass bands:  $\geq 30dB$ Size: 4.0x4.5x0.15mm

## Description

This device is a FET switch filter bank MMIC based on GaAs processing. Adopt +5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

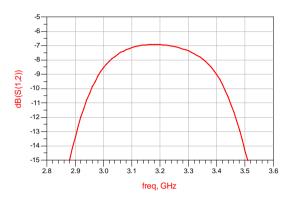
### **Absolute Rating**

| Control Voltage       | -1V~+5V   |
|-----------------------|-----------|
| Input Power           | 27dBm     |
| Storage Temperature   | -65~+150℃ |
| Operating Temperature | -55~+125℃ |

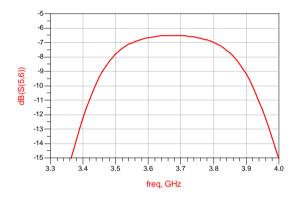
# **Electrical Specifications 1** ( $T_A$ =+25°C)

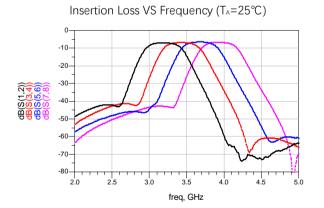
| Spec.          | Pass band 1              | Pass band 2 | Unit |
|----------------|--------------------------|-------------|------|
| Freq. Range    | y. Range 3~3.25 3.25~3.5 |             | GHz  |
| Insertion Loss | ≤9                       | ≤9          | dB   |
| Rejection      | ≥15@2.75GHz ≥15@3GHz     |             | dBc  |
|                | ≥25@3.75GHz              | ≥25@4GHz    | dBc  |
| VSWR           | ≤1.8                     |             | _    |

### Electrical Specifications 2 (T<sub>A</sub>=+25°C)

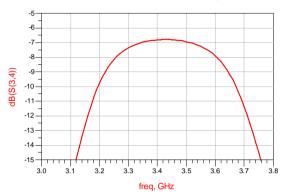

| Spec.          | Pass band 3            | Pass band 4 | Unit |
|----------------|------------------------|-------------|------|
| Freq. Range    | 3.5~3.75               | 3.75~4      | GHz  |
| Insertion Loss | ≤9                     | ≤9          | dB   |
| Daiastias      | ≥15@3.25GHz ≥13@3.5GHz |             | dBc  |
| Rejection      | ≥25@4.25GHz            | ≥25@4.5GHz  | dBc  |
| VSWR           | ≤1.8                   |             |      |

S2P file name: PDSBF4-3\_4-4C8.s2p

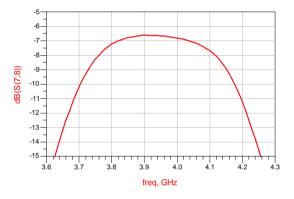




# **Typical Test Curves**

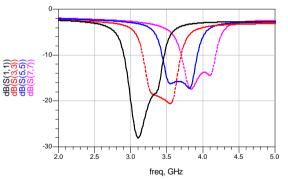
Pass band 1 Insertion Loss VS Frequency ( $T_A=25^{\circ}C$ )




Pass band 3 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)

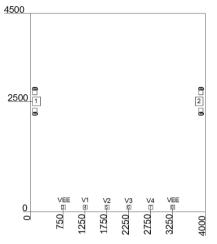






Pass band 2 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)



Pass band 4 Insertion Loss VS Frequency (T<sub>A</sub>=25°C)




Return Loss VS Frequency ( $T_A=25^{\circ}C$ )





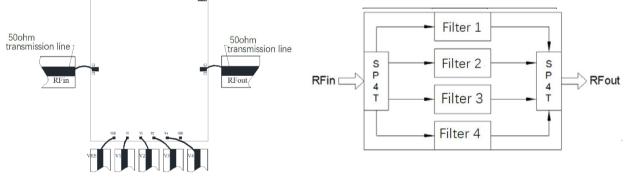
### **Mechanical Specification**



#### **PINS Definitions**

| Pin No.    | Symbol         | Description   |
|------------|----------------|---------------|
| 1, 2       | RF1, RF2       | RF Input, RF  |
| Ι, Ζ       | KFI, KFZ       | Output        |
| 3, 8       | VEE            | Power         |
| 3, 8       | VEE            | Supply ports  |
| 4, 5, 6, 7 | V1, V2, V3, V4 | Control ports |

## **Recommended Assembly Diagrams**


### Truth Table

| Driver Voltage (VEE=-5V) |    |    | Pass bands |              |  |
|--------------------------|----|----|------------|--------------|--|
| V1                       | V2 | V3 | V4         | Pass Danus   |  |
| 5V                       | 0V | 0V | 0V         | 3-3.25 GHz   |  |
| 0V                       | 5V | 0V | 0V         | 3.25-3.5 GHz |  |
| 0V                       | 0V | 5V | 0V         | 3.5-3.75 GHz |  |
| 0V                       | 0V | 0V | 5V         | 3.75-4 GHz   |  |

#### Notes:

- 1. Dimensions are um. Tolerance: ±0.05mm
- 2. Die thickness is 0.1mm
- 3. Typical bond pad is 100um  $\star 100 \text{um}$  , which is 50um away from chip edge.
- 4. The bottom of the device is gold plated, should be grounded.

### **Functional Diagram**



#### **Application Notes:**

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ( $5.8 \times 10-6$ /) with GaAs.

- 3. Recommend using  $\Phi 25 \text{um}$  Au wire for bonding, whose length is around 200 um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.