

Feature

Pass Bands: 6.85GHz ~ 7.9GHz, 7.6GHz ~ 8.65GHz, 8.35GHz ~ 9.4GHz, 9.1GHz ~ 10.15GHz; Insertion Loss in pass bands: ≤ 7.5 dB Isolation between pass bands: ≥ 30 dB Size: 5.5x4.5x0.15mm

Description

This device is a FET switch filter bank MMIC based on GaAs processing, 2-4 decoder is ingrated inside. Adopt +5V/0V logic control or -5V/0V logic control, switching time is less than 30ns typ. It has low loss, excellent isolation, and high integration.

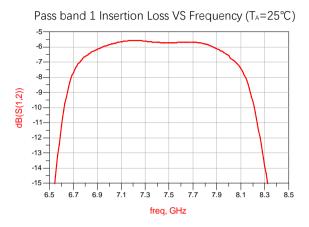
The metallization processing of thru-holes on the plate ensures good grounding. Extra grounding measures aren't required, which is easy for application. The back metallization is suitable for eutectic sintering or conductive adhesive sticking processes.

Absolute Rating

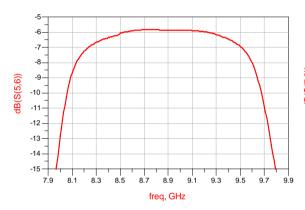
Control Voltage	-1V~+5V	
Input Power	27dBm	
Storage Temperature	-65~+150°C	
Operating Temperature	-55~+125℃	

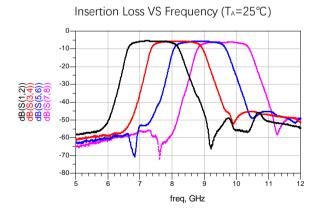
Electrical Specifications 1 (T_A =+25°C)

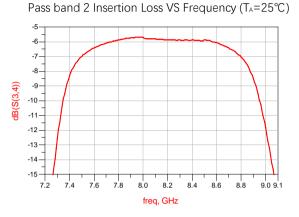
Spec.	Pass band 1	Pass band 2	Unit
Freq. Range	6.85~7.9	7.6~8.65	GHz
Insertion Loss	≤7.5	≤7.5	dB
Rejection	≥40@5.8GHz	≥40@6.5GHz	dBc
	≥40@9.3GHz	≥40@10GHz	dBc
VSWR	≤1.8		_

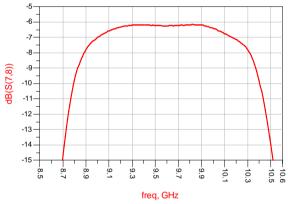

Electrical Specifications 2 (T_A=+25°C)

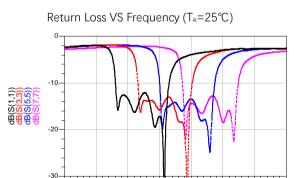
Spec.	Pass band 3	Pass band 4	Unit	
Freq. Range	8.35~9.4	9.1~10.15	GHz	
Insertion Loss	≤7.5	≤7.5	dB	
Rejection -	≥40@7.2GHz	≥40@8GHz	dBc	
	≥40@10.6GHz	≥40@11.4GHz	dBc	
VSWR	≤1.8			


S2P file name: PDSBF4-6R85_10R15-5D7.s2p




Typical Test Curves


Pass band 3 Insertion Loss VS Frequency (T_A=25°C)



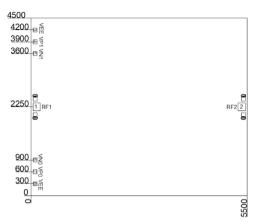
Pass band 4 Insertion Loss VS Frequency (T_A=25°C)

8

freq, GHz

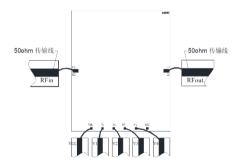
T 6 7

11


12

10

9


Mechanical Specification

PINS Definitions

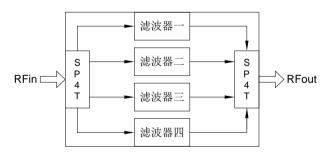
Pin No.	Symbol	Description	
1, 2	RF1, RF2	RF Input, RF Output	
3, 8	VEE	Driver Power Supply Voltage	
4, 7	VP1, VP0	+5/0V Control ports	
5, 6	VN1, VN0	0/-5V Control ports	

Recommended Assembly Diagrams

Truth Table

-						
Driver Voltage (VEE=-5V)						
+5/0V C	ontrol		0/-5V Control		Pass bands	
VP1	VP0		VN1	VN0		
0V	0V		-5V	-5V	6.85-7.9 GHz	
0V	5V		-5V	0V	7.6-8.65GHz	
5V	0V		0V	-5V	8.35-9.4 GHz	
5V	5V		0V	0V	9.1-10.15GHz	

Notes:


1. Dimensions are um. Tolerance: ±0.05mm

2. Die thickness is 0.1mm

3. Typical bond pad is 100um *100um, which is 50um away from chip edge.

4. The bottom of the device is gold plated, should be grounded.

Functional Diagram

Application Notes:

1. The chip is back-metallized and can be die-mounted with AuSn eutectic preforms or with electrically conductive epoxy.

2. The die should be assembled on carriers like Kovar or Mu-Cu which have same Coefficient of thermal expansion. ($5.8 \times 10-6$ /) with GaAs.

- 3. Recommend using Φ 25um Au wire for bonding, whose length is around 200um.
- 4. Sinter by AuSn (80/20), which doesn't exceed 300°C $\,$ within 30 seconds max.
- 4. Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.
- 5. Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers.
- 6. The device is sensitive to ESD. ESD protection is required during storage and usage.
- 7. If you have any questions, please contact us.